Concavity of Eigenvalue Sums and the Spectral Shift Function
نویسندگان
چکیده
منابع مشابه
Concavity of Eigenvalue Sums and the Spectral Shift Function
It is well known that the sum of negative (positive) eigenvalues of some finite Hermitian matrix V is concave (convex) with respect to V . Using the theory of the spectral shift function we generalize this property to self-adjoint operators on a separable Hilbert space with an arbitrary spectrum. More precisely, we prove that the spectral shift function integrated with respect to the spectral p...
متن کاملMonotonicity and Concavity Properties of the Spectral Shift Function
Let H0 and V (s) be self-adjoint, V, V ′ continuously differentiable in trace norm with V (s) ≥ 0 for s ∈ (s1, s2), and denote by {EH(s)(λ)}λ∈R the family of spectral projections of H(s) = H0+V (s). Then we prove for given μ ∈ R, that s 7−→ tr ( V ′(s)EH(s)((−∞, μ)) ) is a nonincreasing function with respect to s, extending a result of Birman and Solomyak. Moreover, denoting by ζ(μ, s) = ∫ μ −∞...
متن کاملProperties of eigenvalue function
For the eigenvalue function on symmetric matrices, we have gathered a number of it’s properties.We show that this map has the properties of continuity, strict continuity, directional differentiability, Frechet differentiability, continuous differentiability. Eigenvalue function will be extended to a larger set of matrices and then the listed properties will prove again.
متن کاملKrein Spectral Shift Function
A b s t r a c t . Let ~A,B be the Krein spectral shift function for a pair of operators A, B, with C = A B trace class. We establish the bound f F(I~A,B()~)I ) d,~ <_ f F ( 1 5 1 c l , o ( ) , ) l ) d A = ~ [F(j) F ( j 1 ) ] # j ( C ) , j= l where F is any non-negative convex function on [0, oo) with F(O) = 0 and #j (C) are the singular values of C. The choice F(t) = t p, p > 1, improves a rece...
متن کاملMeromorphic Continuation of the Spectral Shift Function
We obtain a representation of the derivative of the spectral shift function ξ(λ, h) in the framework of semi-classical ”black box” perturbations. Our representation implies a meromorphic continuation of ξ(λ, h) involving the semi-classical resonances. Moreover, we obtain a Weyl type asymptotics of the spectral shift function as well as a Breit-Wigner approximation in an interval (λ− δ, λ+ δ), 0...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2000
ISSN: 0022-1236
DOI: 10.1006/jfan.2000.3620